8,684 research outputs found

    Investigation of atomic oxygen-surface interactions related to measurements with dual air density explorer satellites

    Get PDF
    For a number of candidate materials of construction for the dual air density explorer satellites the rate of oxygen atom loss by adsorption, surface reaction, and recombination was determined as a function of surface and temperature. Plain aluminum and anodized aluminum surfaces exhibit a collisional atom loss probability alpha .01 in the temperature range 140 - 360 K, and an initial sticking probability. For SiO coated aluminum in the same temperature range, alpha .001 and So .001. Atom-loss on gold is relatively rapid alpha .01. The So for gold varies between 0.25 and unity in the temperature range 360 - 140 K

    Research related to measurements of atomic species in the earth's upper atmosphere Final report

    Get PDF
    Interaction kinetics of atomic oxygen and hydrogen on metal surfaces of satellite-borne mass spectrometer

    Comment on Ds∗→Dsπ0D_s^* \to D_s \pi^0 Decay

    Full text link
    We calculate the rate for Ds∗→Dsπ0D_s^* \rightarrow D_s \pi^0 decay using Chiral Perturbation Theory. This isospin violating process results from π0\pi^0 - η\eta mixing, and its amplitude is proportional to (md−mu)/(ms−(mu+md)/2)(m_d - m_u)/\bigl(m_s-(m_u+m_d)/2 \bigr). Experimental information on the branching ratio for Ds∗→Dsπ0D_s^* \rightarrow D_s \pi^0 can provide insight into the pattern of SU(3)SU(3) violation in radiative D∗D^* decays.Comment: 7 pages with 2 figures not included but available upon request, CALT-68-191

    Dwarf Galaxies with Ionizing Radiation Feedback. I: Escape of Ionizing Photons

    Full text link
    We describe a new method for simulating ionizing radiation and supernova feedback in the analogues of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve the radiative transfer equation for ultraviolet photons emitted by thousands of distinct particles on the fly. Joined with high numerical resolution of 3.8 pc, the realistic description of stellar feedback helps to self-regulate star formation. This new feedback scheme also enables us to study the escape of ionizing photons from star-forming clumps and from a galaxy, and to examine the evolving environment of star-forming gas clumps. By simulating a galactic disk in a halo of 2.3e11 Msun, we find that the average escape fraction from all radiating sources on the spiral arms (excluding the central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ~20 Myr period with a mean value of 1.1%. The flux of escaped photons from these sources is not strongly beamed, but manifests a large opening angle of more than 60 degree from the galactic pole. Further, we investigate the escape fraction per SFMC particle, f_esc(i), and how it evolves as the particle ages. We discover that the average escape fraction f_esc is dominated by a small number of SFMC particles with high f_esc(i). On average, the escape fraction from a SFMC particle rises from 0.27% at its birth to 2.1% at the end of a particle lifetime, 6 Myrs. This is because SFMC particles drift away from the dense gas clumps in which they were born, and because the gas around the star-forming clumps is dispersed by ionizing radiation and supernova feedback. The framework established in this study brings deeper insight into the physics of photon escape fraction from an individual star-forming clump, and from a galactic disk.Comment: 15 pages, 12 figures, Accepted for publication in the Astrophysical Journal, Image resolution reduced, High-resolution version of this article is available at http://www.jihoonkim.org/index/research.html#sfm

    Dwarf Galaxies with Ionizing Radiation Feedback. II: Spatially-resolved Star Formation Relation

    Get PDF
    We investigate the spatially-resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate. Because we have self-consistently calculated the location of ionized gas, we are able to make spatially-resolved mock observations of star formation tracers, such as H-alpha emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3e11 Msun, we find that the correlation between star formation rate density (estimated from mock H-alpha emission) and molecular hydrogen density shows large scatter, especially at high resolutions of <~ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution, and because H-alpha traces hot gas around star-forming regions and is displaced from the molecular hydrogen peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces, and molecular clouds being dispersed via stellar feedback.Comment: 16 pages, 15 figures, Accepted for publication in the Astrophysical Journal, Image resolution greatly reduced, High-resolution version of this article is available at http://www.jihoonkim.org/index/research.html#sfm

    A precise determination of the charm quark's mass in quenched QCD

    Get PDF
    We present a lattice determination of the charm quark's mass, using the mass of the D_s meson as experimental input. All errors are under control with the exception of the quenched approximation. Setting the scale with F_K=160 MeV, our final result for the renormalization group invariant (RGI) quark mass is M_c = 1.654(45) GeV, which translates to m_c(m_c) =1.301(34) GeV for the running mass in the MSbar scheme. A 6 percent increase of the RGI quark mass is observed when the scale is set by the nucleon mass. This is a typical quenched scale ambiguity, which is reduced to about 3 percent for m_c(m_c), and to 4 percent for the mass ratio M_c/M_s. In contrast, the mass splitting m(Dstar_s)-m(D_s) changes from 117(11) MeV to 94(11) MeV, which is significantly smaller than the experimental value of 144 MeV.Comment: 27 pages, 5 figure

    Chiral Estimates of Strong CP Violation Revisited

    Full text link
    The effects of the CP violating θ\theta term in the QCD Lagrangian upon low energy hadronic phenomenology are reconsidered. Strong CP violating interactions among Goldstone bosons and octet baryons are incorporated into an effective chiral Lagrangian framework. The θ\theta term's impact upon the decays η→ππ\eta\to\pi\pi and π0→γγ\pi^0\to\gamma\gamma is then investigated but found to be extremely small. A refined model independent estimate of nonanalytic contributions to the neutron electric dipole moment is also determined using velocity dependent Baryon Chiral Perturbation Theory. We obtain the approximate upper bound ∣θ∣<4.5×10−10|\theta| < 4.5 \times 10^{-10}.Comment: 11 pages with 3 figures not included but available upon request, CALT-68-184

    Resolving the Formation of Protogalaxies. III. Feedback from the First Stars

    Get PDF
    The first stars form in dark matter halos of masses ~10^6 M_sun as suggested by an increasing number of numerical simulations. Radiation feedback from these stars expels most of the gas from their shallow potential well of their surrounding dark matter halos. We use cosmological adaptive mesh refinement simulations that include self-consistent Population III star formation and feedback to examine the properties of assembling early dwarf galaxies. Accurate radiative transport is modeled with adaptive ray tracing. We include supernova explosions and follow the metal enrichment of the intergalactic medium. The calculations focus on the formation of several dwarf galaxies and their progenitors. In these halos, baryon fractions in 10^8 solar mass halos decrease by a factor of 2 with stellar feedback and by a factor of 3 with supernova explosions. We find that radiation feedback and supernova explosions increase gaseous spin parameters up to a factor of 4 and vary with time. Stellar feedback, supernova explosions, and H_2 cooling create a complex, multi-phase interstellar medium whose densities and temperatures can span up to 6 orders of magnitude at a given radius. The pair-instability supernovae of Population III stars alone enrich the halos with virial temperatures of 10^4 K to approximately 10^{-3} of solar metallicity. We find that 40% of the heavy elements resides in the intergalactic medium (IGM) at the end of our calculations. The highest metallicity gas exists in supernova remnants and very dilute regions of the IGM.Comment: 15 pages, 16 figures, accepted to ApJ. Many changes, including estimates of metal line cooling. High resolution images and movies available at http://www.slac.stanford.edu/~jwise/research/PGalaxies3
    • …
    corecore